Teenage Brains – Pictures, More From National Geographic Magazine

The first full series of scans of the developing adolescent brain—a National Institutes of Health (NIH) project that studied over a hundred young people as they grew up during the 1990s—showed that our brains undergo a massive reorganization between our 12th and 25th years. The brain doesn’t actually grow very much during this period. It has already reached 90 percent of its full size by the time a person is six, and a thickening skull accounts for most head growth afterward. But as we move through adolescence, the brain undergoes extensive remodeling, resembling a network and wiring upgrade.

For starters, the brain’s axons—the long nerve fibers that neurons use to send signals to other neurons—become gradually more insulated with a fatty substance called myelin (the brain’s white matter), eventually boosting the axons’ transmission speed up to a hundred times. Meanwhile, dendrites, the branchlike extensions that neurons use to receive signals from nearby axons, grow twiggier, and the most heavily used synapses—the little chemical junctures across which axons and dendrites pass notes—grow richer and stronger. At the same time, synapses that see little use begin to wither. This synaptic pruning, as it is called, causes the brain’s cortex—the outer layer of gray matter where we do much of our conscious and complicated thinking—to become thinner but more efficient. Taken together, these changes make the entire brain a much faster and more sophisticated organ.

This process of maturation, once thought to be largely finished by elementary school, continues throughout adolescence. Imaging work done since the 1990s shows that these physical changes move in a slow wave from the brain’s rear to its front, from areas close to the brain stem that look after older and more behaviorally basic functions, such as vision, movement, and fundamental processing, to the evolutionarily newer and more complicated thinking areas up front. The corpus callosum, which connects the brain’s left and right hemispheres and carries traffic essential to many advanced brain functions, steadily thickens. Stronger links also develop between the hippocampus, a sort of memory directory, and frontal areas that set goals and weigh different agendas; as a result, we get better at integrating memory and experience into our decisions. At the same time, the frontal areas develop greater speed and richer connections, allowing us to generate and weigh far more variables and agendas than before.

When this development proceeds normally, we get better at balancing impulse, desire, goals, self-interest, rules, ethics, and even altruism, generating behavior that is more complex and, sometimes at least, more sensible. But at times, and especially at first, the brain does this work clumsily. It’s hard to get all those new cogs to mesh.

Your instructions are to not look at the light and instead to look in the opposite direction. A sensor detects any eye movement. It’s a tough assignment, since flickering lights naturally draw our attention. To succeed, you must override both a normal impulse to attend to new information and curiosity about something forbidden. Brain geeks call this response inhibition.

Ten-year-olds stink at it, failing about 45 percent of the time. Teens do much better. In fact, by age 15 they can score as well as adults if they’re motivated, resisting temptation about 70 to 80 percent of the time.

What Luna found most interesting, however, was not those scores. It was the brain scans she took while people took the test. Compared with adults, teens tended to make less use of brain regions that monitor performance, spot errors, plan, and stay focused—areas the adults seemed to bring online automatically. This let the adults use a variety of brain resources and better resist temptation, while the teens used those areas less often and more readily gave in to the impulse to look at the flickering light—just as they’re more likely to look away from the road to read a text message.

If offered an extra reward, however, teens showed they could push those executive regions to work harder, improving their scores. And by age 20, their brains respond to this task much as the adults’ do. Luna suspects the improvement comes as richer networks and faster connections make the executive region more effective.

These studies help explain why teens behave with such vexing inconsistency: beguiling at breakfast, disgusting at dinner; masterful on Monday, sleepwalking on Saturday. Along with lacking experience generally, they’re still learning to use their brain’s new networks. Stress, fatigue, or challenges can cause a misfire. Abigail Baird, a Vassar psychologist who studies teens, calls this neural gawkiness—an equivalent to the physical awkwardness teens sometimes display while mastering their growing bodies.

This view, as titles from the explosion of scientific papers and popular articles about the “teen brain” put it, presents adolescents as “works in progress” whose “immature brains” lead some to question whether they are in a state “akin to mental retardation.”

A few researchers began to view recent brain and genetic findings in a brighter, more flattering light, one distinctly colored by evolutionary theory. The resulting account of the adolescent brain—call it the adaptive-adolescent story—casts the teen less as a rough draft than as an exquisitely sensitive, highly adaptable creature wired almost perfectly for the job of moving from the safety of home into the complicated world outside.

via Teenage Brains – Pictures, More From National Geographic Magazine.

Scientific findings on teen brains are hard to deny. Growth takes longer than 6 years (of rapid growth). Work in progress is better than immature minds, while “preparing for the future” is still better. Being moody is part of being pivoting, which is good for learning. In a sense, teens are the time for each to expand their mental space for containing more variety of stuff later. 

This entry was posted in Human Economics. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s