Instant Health Checks for Buildings and Bridges: Scientific American

To automatically detect tiny faults and relay their precise locations, civil engineer Simon Laflamme of the Massachusetts Institute of Technology and his colleagues are devising a “sensing skin”—flexible patches that glue to areas where cracks are likely to occur and continuously monitor them. The formation of a crack would cause a tiny movement in the concrete under a patch, causing a change in the electrical charge stored in the sensing skin, which is made of stretchable plastic mixed with titanium oxide. Every day a computer attached to a collection of patches would send out a current to measure each patch’s charge, a system that Laflamme and his colleagues detail in the Journal of Materials Chemistry.

Although these sensors can detect damage that occurs after they have been installed, what about damage a structure had beforehand? Roboticist Hod Lipson of Cornell University and his colleagues have developed a computer model that simulates an intact structure and runs algorithms that evolve this model until it matches data that sensors provide, which can reveal a broader scope of damage.

via Instant Health Checks for Buildings and Bridges: Scientific American.

This same idea is applied in ecological research: placing constant and instant sensors where the problems may be and do simulation to predict crisis

This entry was posted in Human Economics. Bookmark the permalink.

Leave a comment